Рефераты. Информационная система для школы

1.5 Процесс назначения IPдреса

Присваивается IP-адрес компьютеру либо вручную (статический адрес), либо компьютер получает его автоматически с сервера (динамический адрес). Статический адрес прописывается администратором сети в настройках протокола TCP/IP на каждом компьютере сети и жестко закрепляется за компьютером. В присвоении статических адресов компьютерам есть определенные неудобства:

· Администратор сети должен вести учет всех используемых адресов, чтобы исключить повторы

· При большом количестве компьютеров в локальной сети установка и настройка IP-адресов отнимают много времени

Наряду с перечисленными неудобствами у статических адресов есть одно немаловажное преимущество: постоянное соответствие IP-адреса определенному компьютеру. Это позволяет эффективно применять политику IP-безопасности и контролировать работу пользователей в сети. К примеру, можно запретить определенному компьютеру выходить в Интернет или определить с какого компьютера выходили в Интернет и т.п.

Если компьютеру не присвоен статический IP-адрес, то адрес назначается автоматически. Такой адрес называется динамическим адресом, т. к. при каждом подключении компьютера к локальной сети адрес может меняться. К достоинствам динамических адресов можно отнести:

· Централизованное управление базой IP-адресов

· Надежная настройка, исключающая вероятность дублирования IP-адресов

· Упрощение сетевого администрирования

Динамический IP-адрес назначается специальной серверной службой DHCP (Dynamic Host Configuration Protocol), входящей в состав Windows Server 2003. В параметрах службы DHCP администратором сети прописывается IP-диапазон, адреса из которого, будут выдаваться другим компьютерам. Серверная служба DHCP, которая распространяет (сдает в аренду) IP-адреса называется DHCP-сервер. Компьютер, получающий (арендующий) IP-адрес из сети, называется DHCP-клиент.

Так как в своей работе мы используем Windows Server 2003 Standart, который поддерживает эту службу, то можно не приобретать ip-адрес.

DHCP может поддерживать способ автоматического динамического распределения адресов, а также более простые способы ручного и автоматического статического назначения адресов. Протокол DHCP работает в соответствии с моделью клиент-сервер. Во время старта системы компьютер, являющийся DHCP-клиентом, посылает в сеть широковещательный запрос на получение IP-адреса. DHCP - cepвер откликается и посылает сообщение-ответ, содержащее IP-адрес. Предполагается, что DHCP-клиент и DHCP-сервер находятся в одной IP-сети.

При динамическом распределении адресов DHCP-сервер выдает адрес клиенту на ограниченное время, называемое временем аренды (lease duration), что дает возможность впоследствии повторно использовать этот IP-адрес для назначения другому компьютеру. Основное преимущество DHCP - автоматизация рутинной работы администратора по конфигурированию стека TCP/IP на каждом компьютере. Иногда динамическое разделение адресов позволяет строить IP-сеть, количество узлов в которой превышает количество имеющихся в распоряжении администратора IP-адресов.

В ручной процедуре назначения статических адресов активное участие принимает администратор, который предоставляет DHCP - серверу информацию о соответствии IP-адресов физическим адресам или другим идентификаторам клиентов. DHCP-сервер, пользуясь этой информацией, всегда выдает определенному клиенту назначенный администратором адрес.

При автоматическом статическом способе DHCP-сервер присваивает IP-адрес из пула наличных IP-адресов без вмешательства оператора. Границы пула назначаемых адресов задает администратор при конфигурировании DHCP-сервера. Адрес дается клиенту из пула в постоянное пользование, то есть с неограниченным сроком аренды. Между идентификатором клиента и его IP-адресом по-прежнему, как и при ручном назначении, существует постоянное соответствие. Оно устанавливается в момент первого назначения DHCP-сервером IP-адреса клиенту. При всех последующих запросах сервер возвращает тот же самый IP-адрес.

DHCP обеспечивает надежный и простой способ конфигурации сети TCP/IP, гарантируя отсутствие дублирования адресов за счет централизованного управления их распределением. Администратор управляет процессом назначения адресов с помощью параметра «продолжительность аренды», которая определяет, как долго компьютер может использовать назначенный IP-адрес, перед тем как снова запросить его от DHCP-сервера в аренду.

2. Проектирование структурной схемы вычислительной сети

2.1 Логическая организация сети

Логическая структуризация сети - это процесс разбиения сети на сегменты с локализованным трафиком. Логическая структуризация сети в школе будет осуществляться с помощью коммутаторов.

Сеть будет разделена на два логических сегмента:

1. Те компьютеры, которые находятся в компьютерных классах, будут относиться к одной подсети и иметь одну рабочую группу «Klass».

2. Те компьютеры, которые будут на первом этаже и в учительской, будут относиться к другой подсети и иметь другую рабочую группу «Shkola».

Созданием рабочих групп занимается системный администратор.

Схема логической структуризации сети приведена на рисунке 3.1.

Рисунок 2.1 - Логическая организация сети

2.2 Физическая организация сети

Под физической организацией сети понимается конфигурация связей, образованных отдельными частями кабеля.

На рисунках 3.2, 3.3 приведены планы второго и первого этажа школы, где наглядно можно увидеть, как будет построена сеть, где будут размещены компьютеры, коммутаторы, сервер и как они будут соединены.

Рисунок 2.2 - План первого этажа здания

Рисунок 2.3 - План второго этажа здания

3. Теоретико-расчетная часть

3.1 Расчет длины кабеля и кабель-канала

При расчете длины горизонтального кабеля учитываются следующие очевидные положения. Каждая телекоммуникационная розетка связывается с коммутационным оборудованием одним кабелем. В соответствии со стандартом ISO/IEC 11801 длина кабелей горизонтальной подсистемы не должна превышать 90 м. Кабели прокладываются по кабельным каналам. Принимаются во внимание также спуски, подъемы и повороты этих каналов.

Существует два метода вычисления количества кабеля для горизонтальной подсистемы:

- метод суммирования;

- эмпирический метод.

Метод суммирования заключается в подсчете длины трассы каждого горизонтального кабеля с последующим сложением этих длин. К полученному результату добавляется технологический запас величиной до 10%, а также запас для выполнения разделки в розетках. Достоинством рассматриваемого метода является высокая точность. Однако при отсутствии средств автоматизации и проектировании СКС с большим количеством портов такой подход оказывается чрезмерно трудоемким.

В своей работе я решила воспользоваться эмпирическим методом. Его сущность заключается в применении для подсчета общей длины горизонтального кабеля, затрачиваемого на реализацию конкретной кабельной системы, обобщенной эмпирической формулы.
На основании сделанных предположений общая длина L кабельных трасс принимается равной:

Средняя длина кабельных трасс, где Lmin и Lmax - соответственно длины кабельной трассы от точки размещения коммутатора до разъема самого близкого и самого далекого рабочего места.

Ks - коэффициент технологического запаса - 1.1 (10%);

X - запас для выполнения разделки кабеля. Со стороны рабочего места он принимается равным 30 см.

N - количество розеток на этаже.

Рассчитываем длину кабеля, требуемое для каждого этажа:

Для первого этажа:

Lmin =9,2 м; Lmax =67,5 м.

Lcp = (9,2+67,5)/ 2= 38,35 м.

L = (1,1*38,35+0,3)*8 = 339,88 м.

Для второго этажа:

Lmin =4,5 м; Lmax =74,5 м.

Lcp = (4,5+74,5)/ 2= 39,5 м.

L = (1,1*39,5+0,3)*29 = 1268,75 м.

Для соединения коммутаторов с общим коммутатором:

Lк = 1,3 м;

Для соединения коммутатора с сервером и сервера с модемом:

Lc = 3 м

Общая длина кабеля для здания составляет:

L= 339,88 +1268,75+1,3+3 = 1612,93 м

Исходя из эмпирического метода расчетов, я пришла к следующим результатам: длина максимального сегмента кабеля 74,5 метров, минимального - 4,5.

Примерная длина требуемого кабеля 1630 метров.

А также длина кабеля для соединения первого и второго этажа потребуется экранированной витой пары:

L1-2 = 8,7 м;

Глядя на эти цифры, делаем вывод, что для реализации проекта потребуется витой пары UTP 1630 метров и FTP - 10 метров. Кабель учитывается с небольшим запасом, который потребуется при прокладке кабеля и в процессе эксплуатации.

Также нам потребуется пластиковый настенный короб (кабель-канал) 75х20 мм (на расстоянии 40 см от пола). Длина пластикового короба горизонтальной разводки рассчитывается как сумма длин коридоров.

Итого для горизонтальной подсистемы необходимо:

- кабель UTP - 1630 м

- кабель FTP - 10 м.

- короб пластиковый 75х20 мм. - 130 м.

3.2 Расчет стоимости разработки

Для расчета стоимости разработки необходимо учесть стоимость всего оборудования для прокладки сети. Стоимость и количество приобретаемого оборудования приведены в таблице 3.1.

Таблица 3.1 - Используемое оборудование

Наименование оборудования

Цена, тг

Кол-во

Общая стоим-ть, тг

Сервер HP 470064-709 ML150G5, Intel Xeon QC E5405-2.0GHz, 2Gb, 2x72Gb HP SAS, DVD-RW

199700

1 шт

199700

Microsoft Windows Server 2003 Standart, Russian Disk Kit MVL CD - сетевое программное обеспечение

5100

1 шт

5100

Модем D-Link DSL-2520U, ADSL/ADSL2/2+, Ethernet 10/100, USB

5500

1 шт

5500

Switch 8 port 10/100 Mb D-Link DES-1008D 8-Port N-Way Fast Ethernet Unmanaged Switch - коммутатор

3500

2 шт

7000

Switch 24 ports D-Link DES-1024D, 10/100Base-TX, Ethernet Switch - коммутатор

19700

2 шт

39400

Сетевая карта D-Link DGE-530T 10/100/1000Mbits PCI

2300

32 шт

73600

Кабель FTP 5e cat экранированный

60

10 м

600

Кабель UTP 5E Cat

50

1630 м

81500

Разъем RJ-45 5-е кат

30

130 шт

3900

Розетка 1-port RJ-45 5 категории

500

37 шт

18500

Итого

429850

Заключение

В ходе выполнения данной практической работы была спроектирована локальная вычислительная сеть для школы. В процессе проектирования были учтены все требования, предъявляемые при постановке задачи. Все оборудование выбиралось наиболее максимально доступное и недорогое. Разработанная сеть пока находится в виде проекта, но возможно ее практическое внедрение. При этом система будет исправно выполнять все функции локальной вычислительной сети: связь компьютеров школы для обмена информацией, совместного использования сетевого оборудования, информационных ресурсов и устройств хранения информации, а также осуществлять доступ к глобальной сети Интернет.

В результате были решены задачи, поставленные в начале работы. Был проведено технико-экономическое обоснование данной разработки, разработаны возможные варианты конфигурации сети, спроектирована архитектура сети, произведен расчет длины кабеля и стоимости данной разработки, оформлена пояснительная записка согласно всем требованиям стандартизации и нормоконтроля.

Список источников

1. Олифер В.Г. Компьютерные сети: принципы, технологии, протоколы. 2000 г. - Сп.б.: Питер

2. Гук М. Аппаратные средства IBM PC - 2002 г.

3. Бэрри Нанс. Компьютерные сети пер. с англ. - М.: БИНОМ, 1996.

4. Глоссарий сетевых терминов http://www.bilim.com/koi8/library/glossary/

5. Руководство по сетям Ethernet для начинающих - http://www.citforum.ru/win/nets/ethernet/starter.shtml.

6. Пятибратов А.П. и др. Вычислительные системы, сети и телекоммуникации: Учебник / А.П. Пятибратов, Л.П. Гудынко, А.А. Кириченко: Под ред. А.П. Пятибратова - М.: Финансы и статистика, 1998. - 400 с.

Страницы: 1, 2, 3, 4



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.