Рефераты. Фотоприемники на основе твердого раствора кадмий-ртуть-телур (КРТ)

§     – химическая промышленность;

§     – металлургия черных и цветных металлов;

§     – медицина (ранняя диагностика раковых опухолей и других заболеваний);

§     – геология (поиск нефтегазовый, рудных и нерудных месторождений и геотермальных вод);

§     – городское хозяйство (используют для обнаружения скрытых утечек тепла, горячей и холодной воды в теплотрассах и водопроводной сети, обнаружение карстовых полостей в районах массовой застройки, обнаружение нарушения изоляции электропроводки);

§     – сельское хозяйство (контроль увлажнения и иссушения почв, состояние посевов с/х культур, выявление поражения вредителями и болезнями посевов и т.д.);

§     – лесное хозяйство (выявление массового поражения леса вредителями, обнаружение очагов лесных пожаров при значительном задымлении);

§     – экология (тепловые загрязнения рек и водоёмов, загрязнения воздушного бассейна выбросами электростанций и других промышленных предприятий, наблюдение за миграцией подземных вод – отходов металлургической и химической промышленности);

§     – контроль и диагностика чрезвычайных ситуаций;

§     – энергетика (дистанционный контроль предаварийных ситуаций крупных энергетических объектов).

– КРТ материал относится к собственным полупроводникам, поэтому чувствительность детекторов на его основе выше, чем чувствительность детекторов на основе примесных полупроводников.

- В этом материале время жизни носителей довольно мало, диэлектрическая постоянная невелика, поэтому быстродействие детекторов на основе КРТ высокое.

– Возможность варьировать ширину запрещенной зоны.

– Еще одно преимущество КРТ перед другими материалами заключается в возможности (и это подтверждено опытными разработками) изготавливать многоэлементные линейные и двумерные матрицы фотодетекторов, чувствительных в спектральном диапазоне 10–12 мкм при температуре 77К и в диапазоне 4–6 мкм при температуре 220К (-60 С).

Преимущества гетероэпитаксиальных структур КРТ по сравнению с объемными кристаллами КРТ.

– Преимуществом структур является существенное упрощение технологии изготовления ИК фотоприемников. ГЭС (Гетероэпитаксиальные структуры) КРТ не уступают по свойствам объемным кристаллам КРТ, превосходят их по технологичности изготовления фотоприемников и пригодны для производства многоэлементных фотоприемников с параметрами, близкими к предельным.

– Этот материал может быть изготовлен с различной шириной запрещенной зоны, так что приборы на его основе могут регистрировать ИК-излучение в диапазоне 1.6 – 20 мкм.

 

1.4 HgCdTe: свойства и технология


С точки зрения фундаментальных свойств HgCdTe – очень привлекательный материал, он пользуется большим спросом в течение последних тридцати лет. HgCdTe – полупроводниковый твердый раствор со структурой цинковой обманки, чьи свойства меняются непрерывно с изменением состава х между фазами бинарных соединений. Для того чтобы дать полное описание свойств и сказать, как они изменяются с х, необходимо большое число экспериментальных данных. В отличие от сильной зависимости полупроводниковых свойств от состава, период кристаллической решетки CdTe только на 0.3% больше, чем период кристаллической решетки HgTe. Здесь представлены фундаментальные свойства материала, важные при создании ИК-детекторов, а также связанные с технологией.

Полупроводниковые свойства

Рабочие характеристики ИК-фотодетекторов определяются следующими основными свойствами используемого полупроводника: шириной запрещенной зоны, собственной концентрацией, подвижностями электронов и дырок, коэффициентом поглощения, скоростями тепловой генерации и рекомбинации. Табл. 1 содержит перечень основных параметров материала.

Зонная структура

Электрические и оптические свойства Hg1-xCdxTe определяются структурой запрещенной зоны вблизи Г-точки зоны Бриллюэна. Формы электронной зоны и зоны легких дырок определяются шириной запрещенной зоны и матричным элементом импульса. Ширина запрещенной зоны этого соединения при температуре 4.2 К варьируется от -0,300 эВ для полуметаллического HgTe, проходит ноль при х = 0.15 и далее увеличивается до 1.648 эВ для CdTe.

 

Таблица 1. Физические свойства Hg1-xCdxTe (х = 0; 0.2; 1)

Свойства

Т, К.

HgTe

Hg0.8Cd0.2Te

CdTe

Постоянная решетки А, А

300

6.4614

6.4637

6.4809

Коэф. теплового расширения а, 10 -6 К.

300

4.2

4.1

4.1

Тепловая проводимость С, Вт/(см • К)

300

0.031

0.013

0.057

Плотность р, г/см3

300

8.076

7.630

5.846

Температура плавления Тm, К.


943

940 (тв.)


 




1050 (жид.)

1365

Ширина запрещенной зоны Eg, эВ

300

-0.1415

0.1546

1.4895


77

-0.2608

0.0830

1.6088


4.2

-0.2998

0.05960

1.6478

Эффективные массы: m* /m

77

0.029

0.0064

0.096

mh*/m


0.35–0.7

0.4–0.7

0.66

Подвижности, см2/(В • с): е

77


2.5 х105

4x104

h



7x102

3.8 х 104

Собственная концентрация ni, см-3

300


3.4 х 1016



77


9.9 х 1013


Статическая диэлектрическая постоянная h

300

20.8

17.8

10.5

Высокочастотная диэлектрическая постоянная x

300

15.1

13.0

7.2

 

Подвижности

Благодаря малым эффективным массам, значения подвижности электронов в HgCdTe являются высокими, в то время как подвижность тяжелой дырки – на два порядка ниже. Подвижность электронов определяется рядом механизмов рассеяния, включая рассеяние на ионизированных примесях и разупорядоченностях соединения, электрон – электронные и дырка – дырочные взаимодействия, рассеяние на акустических и полярных оптических фононах. Рассеяние на неполярных оптических фононах вносит значительный вклад в р-типе и полуметаллических материалах n-типа. Несмотря на то, что результаты расчета значений подвижности электронов в основном хорошо согласуются с экспериментом, все еще нет общего теоретического понимания подвижности дырки в HgCdTe.

Электронная подвижность в Hg1-xCdxTe (в см2/(В • с)) в диапазоне составов 0.2 < х < 0.6 и при температурах Т > 50 К может быть аппроксимирована как


е


Где г=(0.2/х)0,6, s = (0.2/x)7.5.

Используют следующую эмпирическую формулу подвижности е для слаболегированного материала n-типа:


е=9х104(me; T)-3/2. (13)


Эта формула может быть связана с формулой подвижности для рассеяния на ионизированной примеси при приблизительной оценке зависимостей е с изменением состава х и уровня легирования полупроводника при температуре >77 К. Предлагают эмпирическую формулу (действующую в диапазоне составов 0.18 < х < 0.25) для изменения подвижности е с изменением х при 300 К для самых высококачественных материалов:

Страницы: 1, 2, 3, 4, 5, 6, 7, 8



2012 © Все права защищены
При использовании материалов активная ссылка на источник обязательна.